Лаборатория экспериментальной и клеточной медицины
От фундаментальной кардиологии к клиническим биомедицинским решениям: исследования фиброза, ишемии и генной терапии на основе вирусных векторов
Команда лаборатории
Цвелая Валерия Александровна
Заведующая лабораторией Кандидат биологических наук
Агладзе Константин Игоревич
Заместитель заведующего лабораторией Доктор биологических наук
Слотвицкий Михаил Михайлович
Старший научный сотрудник Кандидат физико-математических наук
Бакуменко Сергей Сергеевич
Младший научный сотрудник
Бричагина Алина Андреевна
Инженер-исследователь
Турчанинова Елена Александровна
Младший научный сотрудник
Романова Серафима Артуровна
Младший научный сотрудник
Джабраилов Виталий Дмитриевич
Инженер-исследователь
Качан Валерия Сергеевна
Инженер-исследователь
Кононова Дарья Викторовна
Инженер-исследователь
Робустова Софья Дмитриевна
Инженер-исследователь
Синицына Анастасия Павловна
Инженер-исследователь
Литвиненко Вероника Викторовна
Инженер
Дубровская Анастасия Григорьевна
Инженер
Алхатиб Роз
Инженер
Наумов Вадим Дмитриевич
Инженер
Яровой Александр Сергеевич
Инженер
Мифтахова Алсу Тагировна
Техник
Сергеева Татьяна Олеговна
Ассистент
Направления деятельности
1
Кардиологическое моделирование и прогноз
Прогноз и критерии лечения гипертрофической кардиомиопатии, моделирование осложнений при ишемических поражениях органов и предсказание эффективности терапии
2
Разработка алгоритмов для клинических решений
Использование инструментальных методов для изучения физических, коллоидных и химических характеристик синтезированных наночастиц
3
Клеточная терапия и тканевая инженерия
Оценка эффективности клеточной терапии с применением биоподложек in situ, исследование паракринных эффектов на регенерацию тканей
4
Генные технологии и регенеративная кардиология
Использование вирусных векторов для трансдифференцировки рубцовой ткани и разработка регенеративных подходов на основе прямого клеточного перепрограммирования
Научные интересы и Области работы
Генная терапия и трансдифференцировка
Вирусные векторы для регулирования экспрессии генов
Применение вирусных векторов для трансдифференцировки рубцовой ткани
Создание регенеративных методов на основе прямой трансдифференцировки
Биофизика возбудимых сред
Тканевая инженерия сердца
Клеточные технологии и терапия
Клеточная терапия на основе новых биоподложек in situ
Паракринный эффект в замещении поврежденных участков
Использование мезенхимальных клеток в лечении повреждений
Культивирование клеточных линий, дифференцированных из iPSc / иПСК
Клеточное репрограммирование и фенотипирование
Кардиология и доклинические исследования
Сердечные клетки / кардиомиоциты
3D-моделирование сердца
Кардиотоксичность и аритмогенность
Системы подбора лекарств и сохранения донорских органов
Доклинические / преклинические исследования
Моделирование и прогноз кардиологических состояний
Прогноз и критерии лечения гипертрофической кардиомиопатии
Моделирование абляционной терапии при диффузном фиброзе
Моделирование и прогноз осложнений при ишемической болезни органов
Алгоритмы прогнозирования и оценки функциональности органов при операциях и трансплантациях
Неинвазивные методы определения ишемии сердца, легких и почек
Новости ЛАБОРАТОРИИ
Контактная информация
Адрес
г. Долгопрудный, Институтский пер., 9с7, корпус «Физтех.БИО»
Shramova, E. I., Chumakov, S. P., Shipunova, V. O., Ryabova, A. V., Telegin, G. B., Kabashin, A. V., … Proshkina, G. M. (2022). Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light: Science & Applications, 11(1), 38. doi: 10.1038/s41377−022−729−4. IF 19.4 Q1.
Tselikov, G., Danilov, A., Shipunova, V., Deyev, S., Kabashin, A., Grigorenko, A. (2023). Topological Darkness: How to Design a Metamaterial for Optical Biosensing with Ultrahigh Sensitivity. ACS Nano, accepted. doi: 10.1021/acsnano.3c06655. IF 17.1. Q1.
Zelepukin, I. V., Mashkovich, E. A., Lipey, N. A., Popov, A. A., Shipunova, V. O., Griaznova, O. Y., … Zvyagin, A. V. (2022). Direct photoacoustic measurement of silicon nanoparticle degradation promoted by a polymer coating. Chemical Engineering Journal, 430, 132 860. doi: 10.1016/j.cej.2021.132 860. IF 15.1. Q1.
Ukrainskaya, V., Rubtsov, Y., Pershin, D., Podoplelova, N., Terekhov, S., Yaroshevich, I., … Shipunova, V., … Lerner, R. (2021). Antigen-Specific Stimulation and Expansion of CAR-T Cells Using Membrane Vesicles as Target Cell Surrogates. Small, 17(45), 2 102 643. doi: 10.1002/smll.202 102 643. IF 13.3. Q1.
Stepanov, A. V.*, Kalinin, R. S.*, Shipunova, V. O.*, Zhang, D., Xie, J., Rubtsov, Y. P., … & Altman, S. (2022). Switchable targeting of solid tumors by BsCAR T cells. Proceedings of the National Academy of Sciences, 119(46), e2210562119. doi: 10.1073/pnas.2 210 562 119. IF 11.1. Q1. *equal contribution
Komedchikova, E.N.; Kolesnikova, O.A.; Syuy, A.V.; Volkov V.S.; Deyev, S.M.; Nikitin, M.P.; Shipunova, V.O. (2023). Targosomes: Anti-HER2 PLGA Nanocarriers for Bioimaging, Chemotherapy and Local Photothermal Treatment of Tumors and Remote Metastases. Journal of Controlled Release. doi: 10.1016/j.jconrel.2023.11.036. IF 10.8. Q1.
Petrunina, N. A., Shtork, A. S., Lukina, M. M., Tsvetkov, V. B., Khodarovich, Y. M., Feofanov, A. V., … Shipunova, V. O., … Varizhuk, A. M. (2023). Ratiometric i-Motif-Based Sensor for Precise Long-Term Monitoring of pH Micro Alterations in the Nucleoplasm and Interchromatin Granules. ACS Sensors, 8(2), 619−629. doi: 10.1021/acssensors.2c01813. IF 8.9. Q1.
Zelepukin, I. V., Popov, A. A., Shipunova, V. O., Tikhonowski, G. V., Mirkasymov, A. B., Popova-Kuznetsova, E. A., … & Deyev, S. M. (2021). Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Materials Science and Engineering: C (=Biomaterials Advances), 120, 111 717. doi: 10.1016/j.msec.2020.111 717. IF 7.9. Q1.
Nikitin M.P., Shipunova V.O., Deyev S.M. and Nikitin P.I. Biocomputing based on particle disassembly. Nature Nanotechnology 9 (9), 716 (2014). IF 38.3. Q1.
Nikitin M.P.*, Zelepukin I.V.*, Shipunova V.O., Sokolov I.L., Deyev S.M., Nikitin P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nature Biomedical Engineering 4(7), 717−731 (2020). IF 29.2. Q1.
Shipunova V.O., Komedchikova E.N., Kotelnikova P.A., Zelepukin I.V., Schulga A.A., Proshkina G.M., Shramova E.I., Kutscher H.L., Telegin G.B., Kabashin A.V., Prasad P.N., Deyev S.M. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS Nano (2020). IF 17.1. Q1.
Shipunova V.O., Zelepukin I.V., Stremovskiy O.A., Nikitin M.P., Care A., Sunna A., Zvyagin A.V., Deyev S.M. Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO2‑Binding Peptide and Proteinaceous Barnase*Barstar Interface. ACS Applied Materials & Interfaces 10 (20), 17 437−17 447 (2018). IF 9.229.
Shipunova V.O., Nikitin M.P., Nikitin P.I., Deyev S.M. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions. Nanoscale 8 (25), 12 764−12 772 (2016). IF 6.7. Q1.
Основные публикации
V. O. Shipunova, E. N. Komedchikova, P. A. Kotelnikova, I. V. Zelepukin, A. A. Schulga, G. M. Proshkina, E. I. Shramova, H. L. Kutscher, G. B. Telegin, A. V. Kabashin, P. N. Prasad, and S. M. Deyev. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS Nano Article ASAP (Q1) — 2020. DOI: 10.1021/acsnano.0c03421.
Shipunova VO, Belova MM, Kotelnikova PA, Shilova ON, Mirkasymov AB, Danilova NV, Komedchikova EN, Popovtzer R, Deyev SM, Nikitin MP. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics (Q1). 2022; 14(5):1013. doi.org/10.3390/pharmaceutics14051013.
Obozina, A. S., Komedchikova, E. N., Kolesnikova, O. A., Iureva, A. M., Kovalenko, V. L., Zavalko, F. A., Rozhnikova, T.V., Tereshina, E. D., Mochalova E. N., Shipunova, V. O. (2023). Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics (Q1), 15(1), 231. DOI: 10.3390/pharmaceutics15010231.
Kovalenko, V. L., Komedchikova, E. N., Sogomonyan, A. S., Tereshina, E. D., Kolesnikova, O. A., Mirkasymov, A. B., Iureva, A. M., Zvyagin A.V., Nikitin P.I., Shipunova, V. O. (2023). Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics (Q1), 15(1), 92. DOI: 10.3390/pharmaceutics15010092.
Komedchikova, E. N., Kolesnikova, O. A., Tereshina, E. D., Kotelnikova, P. A., Sogomonyan, A. S., Stepanov, A. V., Deyev S.M., Nikitin M.P., Shipunova, V. O. (2023). Two-Step Targeted Drug Delivery via Proteinaceous Barnase-Barstar Interface and Doxorubicin-Loaded Nano-PLGA Outperforms One-Step Strategy for Targeted Delivery to HER2-Overexpressing Cells. Pharmaceutics (Q1), 15(1), 52. DOI: 10.3390/pharmaceutics15010052.
Drozdov, A. S., Komarova, K. S., Mochalova, E. N., Komedchikova, E. N., Shipunova, V. O., & Nikitin, M. P. (2023). Fluorescent Magnetic Nanoparticles for Bioimaging through Biomimetic Surface Modification. International Journal of Molecular Sciences (Q1), 24(1), 134. DOI: 10.3390/ijms24010134.
Kovalenko, V.L.; Kolesnikova, O.A.; Nikitin, M.P.; Shipunova, V.O.; Komedchikova, E.N. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. Micromachines (Q2) 2023, 14, 1647. doi.org/10.3390/mi14081647.
Shipunova, V.O.; Komedchikova, E.N.; Kotelnikova, P.A.; Nikitin, M.P.; Deyev, S.M. Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics (Q1) 2023, 15, 833. doi.org/10.3390/pharmaceutics15030833.
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release (Q1). 2023 Nov 25; 365:317−330. doi: 10.1016/j.jconrel.2023.11.036.
Основные публикации
Shipunova VO, Kolesnikova OA, Kotelnikova PA, Soloviev VD, Popov AA, Proshkina GM, Nikitin MP, Deyev SM. Comparative Evaluation of Engineered Polypeptide Scaffolds in HER2-Targeting Magnetic Nanocarrier Delivery. ACS Omega. 2021 Jun 10;6(24):16 000−16 008. doi: 10.1021/acsomega.1c01811. IF 4.1, Q1.
Kovalenko VL, Kolesnikova OA, Nikitin MP, Shipunova VO, Komedchikova EN. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. Micromachines (Basel). 2023 Aug 21;14(8):1647. doi: 10.3390/mi14081647. IF 3.4, Q2.
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics. 2023 Jan 10;15(1):231. doi: 10.3390/pharmaceutics15010231. IF 5.4, Q1.
Komedchikova EN, Kolesnikova OA, Tereshina ED, Kotelnikova PA, Sogomonyan AS, Stepanov AV, Deyev SM, Nikitin MP, Shipunova VO. Two-Step Targeted Drug Delivery via Proteinaceous Barnase-Barstar Interface and Doxorubicin-Loaded Nano-PLGA Outperforms One-Step Strategy for Targeted Delivery to HER2-Overexpressing Cells. Pharmaceutics. 2022 Dec 24;15(1):52. doi: 10.3390/pharmaceutics15010052. IF 5.4, Q1.
Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB, Iureva AM, Zvyagin AV, Nikitin PI, Shipunova VO. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics. 2022 Dec 27;15(1):92. doi: 10.3390/pharmaceutics15010092. IF 5.4, Q1.
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release. 2024 Jan;365:317−330. doi: 10.1016/j.jconrel.2023.11.036. Epub 2023 Nov 25. PMID: 37 996 056. IF 10.8, Q1.
Kovalenko, V.L.; Kolesnikova, O.A.; Nikitin, M.P.; Shipunova, V.O.; Komedchikova, E.N. Surface Characteristics Affect the Properties of PLGA Nanoparticles as Photothermal Agents. Micromachines (Q2) 2023, 14, 1647. doi.org/10.3390/mi14081647.
Shipunova, V.O.; Komedchikova, E.N.; Kotelnikova, P.A.; Nikitin, M.P.; Deyev, S.M. Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics (Q1) 2023, 15, 833. doi.org/10.3390/pharmaceutics15030833.
Komedchikova EN, Kolesnikova OA, Syuy AV, Volkov VS, Deyev SM, Nikitin MP, Shipunova VO. Targosomes: Anti-HER2 PLGA nanocarriers for bioimaging, chemotherapy and local photothermal treatment of tumors and remote metastases. J Control Release (Q1). 2023 Nov 25; 365:317−330. doi: 10.1016/j.jconrel.2023.11.036.
Основные публикации
Obozina, A.S.; Komedchikova, E.N.; Kolesnikova, O.A.; Iureva, A.M.; Kovalenko, V.L.; Zavalko, F.A.; Rozhnikova, T.V.; Tereshina, E.D.; Mochalova, E.N.; Shipunova, V.O. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023, 15, 231. doi.org/10.3390/pharmaceutics15010231.
Основные публикации
Iureva et al. The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: Comprehensive study // European Journal of Pharmaceutics and Biopharmaceutics. — 2024. — С. 114 366.
Kovalenko V. L. et al. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo //Pharmaceutics. — 2022. — Т. 15. — №. 1. — С. 92.
Obozina A. S. et al. Genetically encoded self-assembling protein nanoparticles for the targeted delivery in vitro and in vivo //Pharmaceutics. — 2023. — Т. 15. — №. 1. — С. 231.
Kotelnikova P. A. et al. Peroxidase-like activity of silver nanowires and its application for colorimetric detection of the antibiotic chloramphenicol //Talanta Open. — 2022. — Т. 6. — С. 100 164.
Основные публикации
Optical clearing of tissues: issues of antimicrobial phototherapy and drug delivery. VV Tuchin, EA Genina, ES Tuchina, AV Svetlakova, YI Svenskaya, Advanced Drug Delivery Reviews.
Исследование фотокаталитической антимикробной активности нанокомпозитов на основе TiO–AlO при воздействии светодиодного излучения. АВ Светлакова, ЕС Тучина, АН Ходан, ВВ Тучин, Оптика и спектроскопия.
Новые гипс-титановые композиты для антимикробного фотокаталитического воздействия на Staphylococcus aureus, Е Тучина, МВ Корченова, АВ Светлакова, К Криштиану, ВВ Тучин, Известия Саратовского университета. Новая серия.
Основные публикации
Shipunova, V.O.; Kovalenko, V.L.; Kotelnikova, P.A.; Sogomonyan, A.S.; Shilova, O.N.; Komedchikova, E.N.; Zvyagin, A.V.; Nikitin, M.P.; Deyev, S.M. Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers’ Performance In Vitro and In Vivo. Pharmaceutics 2022, 14, 43. https://doi.org/10.3390/pharmaceutics14010043.
Obozina, A.S.; Komedchikova, E.N.; Kolesnikova, O.A.; Iureva, A.M.; Kovalenko, V.L.; Zavalko, F.A.; Rozhnikova, T.V.; Tereshina, E.D.; Mochalova, E.N.; Shipunova, V.O. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023, 15, 231. https://doi.org/10.3390/pharmaceutics15010231.